1,848 research outputs found

    Supervised Learning in Spiking Neural Networks with Phase-Change Memory Synapses

    Full text link
    Spiking neural networks (SNN) are artificial computational models that have been inspired by the brain's ability to naturally encode and process information in the time domain. The added temporal dimension is believed to render them more computationally efficient than the conventional artificial neural networks, though their full computational capabilities are yet to be explored. Recently, computational memory architectures based on non-volatile memory crossbar arrays have shown great promise to implement parallel computations in artificial and spiking neural networks. In this work, we experimentally demonstrate for the first time, the feasibility to realize high-performance event-driven in-situ supervised learning systems using nanoscale and stochastic phase-change synapses. Our SNN is trained to recognize audio signals of alphabets encoded using spikes in the time domain and to generate spike trains at precise time instances to represent the pixel intensities of their corresponding images. Moreover, with a statistical model capturing the experimental behavior of the devices, we investigate architectural and systems-level solutions for improving the training and inference performance of our computational memory-based system. Combining the computational potential of supervised SNNs with the parallel compute power of computational memory, the work paves the way for next-generation of efficient brain-inspired systems

    Monatomic phase change memory

    Full text link
    Phase change memory has been developed into a mature technology capable of storing information in a fast and non-volatile way, with potential for neuromorphic computing applications. However, its future impact in electronics depends crucially on how the materials at the core of this technology adapt to the requirements arising from continued scaling towards higher device densities. A common strategy to finetune the properties of phase change memory materials, reaching reasonable thermal stability in optical data storage, relies on mixing precise amounts of different dopants, resulting often in quaternary or even more complicated compounds. Here we show how the simplest material imaginable, a single element (in this case, antimony), can become a valid alternative when confined in extremely small volumes. This compositional simplification eliminates problems related to unwanted deviations from the optimized stoichiometry in the switching volume, which become increasingly pressing when devices are aggressively miniaturized. Removing compositional optimization issues may allow one to capitalize on nanosize effects in information storage

    ESSOP: Efficient and Scalable Stochastic Outer Product Architecture for Deep Learning

    Full text link
    Deep neural networks (DNNs) have surpassed human-level accuracy in a variety of cognitive tasks but at the cost of significant memory/time requirements in DNN training. This limits their deployment in energy and memory limited applications that require real-time learning. Matrix-vector multiplications (MVM) and vector-vector outer product (VVOP) are the two most expensive operations associated with the training of DNNs. Strategies to improve the efficiency of MVM computation in hardware have been demonstrated with minimal impact on training accuracy. However, the VVOP computation remains a relatively less explored bottleneck even with the aforementioned strategies. Stochastic computing (SC) has been proposed to improve the efficiency of VVOP computation but on relatively shallow networks with bounded activation functions and floating-point (FP) scaling of activation gradients. In this paper, we propose ESSOP, an efficient and scalable stochastic outer product architecture based on the SC paradigm. We introduce efficient techniques to generalize SC for weight update computation in DNNs with the unbounded activation functions (e.g., ReLU), required by many state-of-the-art networks. Our architecture reduces the computational cost by re-using random numbers and replacing certain FP multiplication operations by bit shift scaling. We show that the ResNet-32 network with 33 convolution layers and a fully-connected layer can be trained with ESSOP on the CIFAR-10 dataset to achieve baseline comparable accuracy. Hardware design of ESSOP at 14nm technology node shows that, compared to a highly pipelined FP16 multiplier design, ESSOP is 82.2% and 93.7% better in energy and area efficiency respectively for outer product computation.Comment: 5 pages. 5 figures. Accepted at ISCAS 2020 for publicatio

    A flexible and fast PyTorch toolkit for simulating training and inference on analog crossbar arrays

    Full text link
    We introduce the IBM Analog Hardware Acceleration Kit, a new and first of a kind open source toolkit to simulate analog crossbar arrays in a convenient fashion from within PyTorch (freely available at https://github.com/IBM/aihwkit). The toolkit is under active development and is centered around the concept of an "analog tile" which captures the computations performed on a crossbar array. Analog tiles are building blocks that can be used to extend existing network modules with analog components and compose arbitrary artificial neural networks (ANNs) using the flexibility of the PyTorch framework. Analog tiles can be conveniently configured to emulate a plethora of different analog hardware characteristics and their non-idealities, such as device-to-device and cycle-to-cycle variations, resistive device response curves, and weight and output noise. Additionally, the toolkit makes it possible to design custom unit cell configurations and to use advanced analog optimization algorithms such as Tiki-Taka. Moreover, the backward and update behavior can be set to "ideal" to enable hardware-aware training features for chips that target inference acceleration only. To evaluate the inference accuracy of such chips over time, we provide statistical programming noise and drift models calibrated on phase-change memory hardware. Our new toolkit is fully GPU accelerated and can be used to conveniently estimate the impact of material properties and non-idealities of future analog technology on the accuracy for arbitrary ANNs.Comment: Submitted to AICAS202
    • …
    corecore